Thread Rating:
Capacitors, Inductors & Reactance — How Circuits Store and Release Energy
#1
Thread 2 — Capacitors, Inductors & Reactance 
Understanding Energy Storage in Electrical Systems

In electronic and electrical systems, not all components simply resist current. 
Some store energy — temporarily — and release it when the circuit changes.

These components are essential in:
• power supplies 
• radio systems 
• filters 
• microcontrollers 
• motors 
• communication electronics 

This thread covers the three pillars of reactive components.



1. What Is a Capacitor?

A capacitor stores electrical energy in an electric field.

Simple structure:
• two metal plates 
• separated by an insulator (dielectric) 

Key behaviour:
• capacitors charge when connected to a voltage 
• they release that stored energy when the voltage drops 

Unit: farads (F)

Common uses:
• smoothing power supplies 
• filtering signals 
• timing circuits 
• energy bursts (camera flash) 
• memory (old DRAM tech) 



2. Capacitor Equation — Q = C × V

Charge stored: 
Q = C × V

Where:
• Q = charge (coulombs) 
• C = capacitance (farads) 
• V = voltage 

Larger capacitance → more storage. 
Higher voltage → more charge stored.



3. Capacitor Behaviour in DC & AC

DC circuits: 
• a capacitor charges up 
• once full → it blocks further current 
(acts like an open circuit)

AC circuits: 
• constantly charges/discharges 
• allows AC to pass 
• blocks DC 
(acts like a frequency-dependent resistor)

This makes capacitors perfect for filters and signal processing.



4. What Is an Inductor?

An inductor stores energy in a magnetic field.

Structure:
• coil of wire 
• sometimes wrapped around a magnetic core 

Key behaviour:
• resists changes in current 
• smooths current 
• releases energy when current drops 

Unit: henrys (H)

Used in:
• transformers 
• motors 
• filters 
• DC–DC converters 
• radio and communication circuits 



5. Inductor Equation — V = L × (di/dt)

Voltage across an inductor is:

V = L × (di/dt)

Meaning:
• big change in current → large voltage spike 
• slow change → small voltage 

Inductors hate sudden changes.



6. Inductor Behaviour in DC & AC

DC circuits: 
• resists current at first 
• eventually acts like a short circuit (just a wire)

AC circuits: 
• blocks high frequencies 
• allows low frequencies through 

Inductors and capacitors together make frequency filters.



7. Reactance — Frequency-Dependent Resistance

Reactance (X) is like resistance, but only for AC signals.

Capacitive reactance: 
Xc = 1 / (2πfC) 
Higher frequency → LOWER reactance 
(capacitors pass high frequencies)

Inductive reactance: 
Xl = 2πfL 
Higher frequency → HIGHER reactance 
(inductors block high frequencies)



8. Resonance — When Capacitors & Inductors Work Together

At one special frequency, their reactances cancel:

Xl = Xc

This creates a resonant circuit.

Used in:
• radio tuners 
• oscillators 
• filters 
• wireless charging 

Resonant circuits can:
• boost signals 
• select specific frequencies 
• generate stable oscillations 



9. Capacitors & Inductors in Filters

Low-pass filter (LPF): 
• lets low frequencies through 
• blocks high frequencies 
• often uses inductors

High-pass filter (HPF): 
• passes high frequencies 
• blocks low frequencies 
• often uses capacitors

Band-pass filter: 
• selects a specific frequency range 
• essential in radios, Wi-Fi, communication systems 



10. What Comes Next?

Next threads build on these concepts:
• Thread 3 — Semiconductors & Diodes 
• Thread 4 — Transistors (BJTs, MOSFETs) 
• Thread 5 — Logic Gates & Digital Systems 
• Thread 6 — Microcontrollers & Embedded Systems 
• Thread 7 — PCB Design Basics 
• Thread 8 — Communication Systems 
• Thread 9 — Power Electronics 
• Thread 10 — Sensors & Instrumentation 

Every major piece of electronics relies on capacitors and inductors somewhere.



End of Thread — Reactive Components & Circuit Behaviour
Reply
« Next Oldest | Next Newest »


Forum Jump:


Users browsing this thread: 1 Guest(s)