Thread Rating:
Molecular Vibrations & IR Spectroscopy: How Chemists See Bonds Moving
#1
Thread 9 — Molecular Vibrations & IR Spectroscopy: How Chemists See Bonds Moving
The Physics of Stretching, Bending, and the Light That Reveals It All

Molecules are not static. 
Even at absolute zero, their atoms vibrate — 
stretching, bending, twisting, and rocking in quantised patterns.

These vibrations absorb very specific wavelengths of infrared (IR) light, 
allowing chemists to “see” which bonds exist inside a molecule.

This thread explains molecular vibrations, IR absorption, 
and how spectroscopy uncovers structural information with stunning precision.



1. Molecules Are Quantum Oscillators

Every chemical bond behaves like a miniature spring:

• atoms act as masses 
• bonds behave like springs 
• system vibrates at a natural frequency 

Quantum mechanics restricts vibrations to discrete energy levels (no continuous values).

Two simplest vibrations:

• stretching (bond length changes) 
• bending (bond angles change)


Each has defined energies → defined IR absorption frequencies.



2. Types of Molecular Vibrations

A. Stretching 
• symmetrical stretch 
• asymmetrical stretch 
Occurs along the bond axis.

B. Bending 
• scissoring 
• rocking 
• wagging 
• twisting 
Occurs when bond angles shift.

Complex molecules have many vibrational modes 
(3N – 6 for nonlinear molecules, where N = number of atoms).



3. IR Absorption — Matching Light to Vibrations

When IR light hits a molecule:

• if photon energy matches a vibrational mode 
→ molecule absorbs it 
→ electron clouds shift 
→ vibration amplitude increases 

This creates characteristic absorption peaks at specific wavenumbers (cm⁻¹).

IR absorption = a vibrational fingerprint



4. Characteristic Bond Frequencies

A few examples chemists instantly recognise:

~1700 cm⁻¹ → C=O stretch (carbonyl) 
~3300 cm⁻¹ → O–H stretch (alcohols, acids) 
~2100 cm⁻¹ → C≡C or C≡N triple bonds 
~1600 cm⁻¹ → aromatic ring vibrations 
~2850–2950 cm⁻¹ → C–H stretches (alkanes)

Each bond absorbs energy based on:

• bond strength (stronger = higher frequency) 
• atomic mass (lighter atoms vibrate faster)

Hence:

C–H > N–H > O–H > heavier atom bonds 
in frequency.



5. Why IR Spectroscopy Works — The Dipole Rule

A molecule only absorbs IR if the vibration changes its dipole moment:

Δμ ≠ 0  → IR active

Examples:

• CO₂ symmetric stretch → dipole stays zero → IR inactive 
• CO₂ asymmetric stretch → dipole changes → IR active 

This rule explains which vibrations appear in spectra.



6. How Chemists Read an IR Spectrum

An IR spectrum contains:

• functional group region (4000–1500 cm⁻¹) 
• fingerprint region (1500–400 cm⁻¹)


The top half identifies important groups:

• O–H region 
• N–H region 
• C≡N and C≡C 
• carbonyls 
• alkenes/alcohols/aromatics 

The lower “fingerprint” region is highly complex but unique to every molecule 
— like a chemical barcode.



7. IR Spectroscopy in Real Science

Used for:

• identifying unknown organic molecules 
• monitoring reaction progress 
• analysing atmospheric gases (CO₂, CH₄) 
• studying proteins and polymer structures 
• forensic investigations 
• remote sensing on other planets (Mars methane measurements) 

Even space telescopes use vibrational signatures 
to detect molecules in nebulae and exoplanet atmospheres.



8. Advanced Concept: Harmonics & Combination Bands

Real molecules can show:

• overtones (higher-frequency multiples) 
• combination bands 
• Fermi resonance (vibration-vibration coupling)

These arise from quantum interference between vibrational states 
and help chemists infer subtle structural features.



9. The Quantum Summary

Molecules absorb IR because:

• bonds vibrate with quantised energy 
• IR photons can excite those vibrations 
• each bond absorbs at specific frequencies 
• spectra act as molecular fingerprints


This is why IR spectroscopy is one of the most powerful tools 
for identifying what matter is made of.



Written by Leejohnston & Liora — The Lumin Archive Research Division
Reply
« Next Oldest | Next Newest »


Forum Jump:


Users browsing this thread: 1 Guest(s)