11-13-2025, 01:47 PM
NumPy Cheat Sheet — Science Coding Edition
NumPy is the foundation of scientific computing in Python.
It powers simulations, data analysis, physics calculations, AI, and large-scale maths.
This sheet gives you the essential commands and concepts every science coder needs.
-----------------------------------------------------------------------
1. Importing NumPy
The standard import:
-----------------------------------------------------------------------
2. Creating Arrays
1D array:
2D array (matrix):
Zeros & ones:
Range of values:
Even spacing:
-----------------------------------------------------------------------
3. Array Operations (Fast Maths)
NumPy does maths element-by-element:
Scalar operations:
-----------------------------------------------------------------------
4. Useful Functions
-----------------------------------------------------------------------
5. Indexing & Slicing
Select elements like Python lists:
2D indexing:
-----------------------------------------------------------------------
6. Shape & Reshaping
Example:
-----------------------------------------------------------------------
7. Matrix Operations (Important for Physics & AI)
Matrix multiplication:
or
Transpose:
Inverse (if square matrix):
Determinant:
Solve linear equations:
-----------------------------------------------------------------------
8. Random Numbers (Useful in Simulations)
Random arrays:
-----------------------------------------------------------------------
9. Loading & Saving Data
Load CSV:
Save array:
-----------------------------------------------------------------------
10. Common Mistakes
❌ Using lists instead of arrays for scientific maths
✔ NumPy arrays are MUCH faster and support vectorised maths
❌ Forgetting that * multiplies element-by-element
✔ Use dot() or @ for matrix multiplication
❌ Mixing shapes (e.g., 3×3 with 2×2)
✔ Check array dimensions with .shape
❌ Using Python math functions
✔ Use np.sqrt(), np.log(), np.exp() for arrays
❌ Forgetting to import NumPy
✔ import numpy as np
-----------------------------------------------------------------------
Summary
NumPy gives you:
• fast arrays
• vectorised maths
• matrix operations
• scientific functions
• random numbers
• reshaping & slicing
• data loading
It’s the foundation of all serious scientific computing in Python.
NumPy is the foundation of scientific computing in Python.
It powers simulations, data analysis, physics calculations, AI, and large-scale maths.
This sheet gives you the essential commands and concepts every science coder needs.
-----------------------------------------------------------------------
1. Importing NumPy
The standard import:
Code:
import numpy as np-----------------------------------------------------------------------
2. Creating Arrays
1D array:
Code:
a = np.array([1, 2, 3, 4])2D array (matrix):
Code:
b = np.array([
[1, 2],
[3, 4]
])Zeros & ones:
Code:
np.zeros(5)
np.ones((3,3))Range of values:
Code:
np.arange(0, 10, 2) # 0,2,4,6,8Even spacing:
Code:
np.linspace(0, 1, 5)-----------------------------------------------------------------------
3. Array Operations (Fast Maths)
NumPy does maths element-by-element:
Code:
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
a + b # [5, 7, 9]
a * b # [4, 10, 18]
a ** 2 # [1, 4, 9]Scalar operations:
Code:
a + 10 # [11, 12, 13]
a * 3 # [3, 6, 9]-----------------------------------------------------------------------
4. Useful Functions
Code:
np.sum(a)
np.mean(a)
np.max(a)
np.min(a)
np.std(a) # standard deviation
np.sqrt(a)
np.exp(a)
np.log(a)-----------------------------------------------------------------------
5. Indexing & Slicing
Select elements like Python lists:
Code:
a = np.array([10, 20, 30, 40])
a[0] # 10
a[1:3] # [20, 30]
a[-1] # 402D indexing:
Code:
b = np.array([
[1, 2, 3],
[4, 5, 6]
])
b[0, 1] # 2
b[:, 0] # first column → [1, 4]
b[1, :] # second row → [4, 5, 6]-----------------------------------------------------------------------
6. Shape & Reshaping
Code:
a.shape
a.reshape(2, 3)Example:
Code:
x = np.arange(6) # [0 1 2 3 4 5]
x.reshape(2, 3) # 2 rows, 3 columns-----------------------------------------------------------------------
7. Matrix Operations (Important for Physics & AI)
Matrix multiplication:
Code:
np.dot(A, B)or
Code:
A @ BTranspose:
Code:
A.TInverse (if square matrix):
Code:
np.linalg.inv(A)Determinant:
Code:
np.linalg.det(A)Solve linear equations:
Code:
np.linalg.solve(A, b)-----------------------------------------------------------------------
8. Random Numbers (Useful in Simulations)
Code:
np.random.rand(3) # random numbers 0–1
np.random.randn(3) # normal distribution
np.random.randint(0, 10) # random integerRandom arrays:
Code:
np.random.rand(2, 3)-----------------------------------------------------------------------
9. Loading & Saving Data
Load CSV:
Code:
data = np.loadtxt("data.csv", delimiter=",")Save array:
Code:
np.savetxt("output.csv", data, delimiter=",")-----------------------------------------------------------------------
10. Common Mistakes
❌ Using lists instead of arrays for scientific maths
✔ NumPy arrays are MUCH faster and support vectorised maths
❌ Forgetting that * multiplies element-by-element
✔ Use dot() or @ for matrix multiplication
❌ Mixing shapes (e.g., 3×3 with 2×2)
✔ Check array dimensions with .shape
❌ Using Python math functions
✔ Use np.sqrt(), np.log(), np.exp() for arrays
❌ Forgetting to import NumPy
✔ import numpy as np
-----------------------------------------------------------------------
Summary
NumPy gives you:
• fast arrays
• vectorised maths
• matrix operations
• scientific functions
• random numbers
• reshaping & slicing
• data loading
It’s the foundation of all serious scientific computing in Python.
