Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
How Aircraft Generate Lift — The Full Explanation (Without Myths)
#1
Thread 1 — How Aircraft Generate Lift 
A complete, myth-free explanation of how wings really work.

Many diagrams online oversimplify lift. 
Some claim “air travels faster over the top because it has farther to go.” 
This is incorrect — and violates physics.

This thread gives the REAL explanation used in aerospace engineering,
combining airflow, pressure, angle of attack, and Newton’s laws.



1. The Four Forces of Flight

All aircraft in steady flight balance four forces:

• Lift (upwards) 
• Weight (gravity) 
• Thrust (forward) 
• Drag (backward) 

For level flight: 
Lift = Weight 
Thrust = Drag

Changing any of these changes altitude or speed.



2. What Really Creates Lift

Lift is created by a combination of:

• low pressure above the wing 
• high pressure below the wing 
• downward deflection of air (Newton’s 3rd Law)

The key is the angle of attack (AoA) — the angle between wing and airflow.

A small AoA → small lift 
A larger AoA → more lift (up to a point)

Beyond a critical AoA → stall



3. Bernoulli + Newton (Working Together)

Aerospace engineers use both:

Bernoulli Principle: 
Fast-moving air has lower pressure.

Newton’s 3rd Law: 
The wing pushes air down → air pushes wing up.

Neither explanation alone is complete — lift requires BOTH.



4. Airfoil Shape

Wings (airfoils) are shaped with:

• curved upper surface 
• flatter lower surface 
• tapered trailing edge 

This shape accelerates air over the top → lower pressure 
while also guiding the flow downward → upward reaction force.

Key terms:

• chord line 
• camber 
• leading edge 
• trailing edge 
• thickness ratio 



5. Angle of Attack & Stall

Increasing AoA increases lift — 
but only until approx 12°–16°.

Beyond that:

• airflow separates 
• turbulence increases 
• lift collapses 
→ stall

Stall is about AoA, not speed.



6. Reynolds Number (Why Model Planes Aren’t the Same)

Re = (ρ v L) / μ

It tells you whether flow is laminar or turbulent.

Small models have different Reynolds numbers, which means:

• lift curves differ 
• stall behaviour changes 
• drag characteristics shift

This is why wind-tunnel scaling is difficult.



7. Lift Equation

Lift = ½ ρ v² S C_L

Where:

ρ = air density 
v = velocity 
S = wing area 
C_L = lift coefficient (depends on AoA & shape)

This is the key equation used in aircraft design.



8. Visual Summary Diagram (Text Form)

  ↑ Low Pressure 
  |  (fast-moving air)
  |      ________
  |    /        \
→→→>>> /  Wing    \ >>>→→→
        ----------
  ↑ High Pressure 
  (slower-moving air)

Air is deflected DOWN behind the wing. 
Lift is the equal and opposite reaction.



9. Why Wings Work Upside Down

Aerobatic aircraft fly inverted because lift mainly comes from:

• angle of attack 
NOT ONLY the airfoil shape.

Invert the plane → tilt the wing correctly → lift returns.



10. What You’ve Learned

You now understand:

• the 4 forces of flight 
• why air moves faster over a wing 
• how pressure differences arise 
• the real aerodynamic causes of lift 
• why angle of attack is everything 
• how stall works 
• the lift equation used by engineers 
• why models don’t scale perfectly 

This thread gives users a solid starting point for real aerospace engineering.



Written by LeeJohnston & Liora — The Lumin Archive Research Division
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)