Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Optimisation — How Mathematics Finds the Best Possible Solution
#1
Thread 6 — Optimisation
How Mathematics Finds the Best Possible Solution

Every engineering design, every machine-learning model, every financial system, and every scientific simulation relies on one idea:

Finding the best possible solution under constraints.

That process is called optimisation, and it sits at the heart of modern mathematics and computation.

This thread explores the major optimisation methods and how they drive real-world systems.



1. What Is Optimisation?

Optimisation is the process of finding:

• the minimum value 
• the maximum value 
• or the best configuration 

…of a function or system.

Examples:

• designing the strongest but lightest bridge 
• finding the fastest rocket trajectory 
• training a neural network 
• minimising fuel consumption 
• choosing the best investment strategy 
• locating faults in engineering models

At its core, optimisation asks:

“What is the best possible outcome within the rules of this system?”



2. Types of Optimisation Problems

• Unconstrained Optimisation 
Find minimum/maximum with no restrictions. 
E.g. gradient descent.

• Constrained Optimisation 
Solutions must follow rules (called constraints). 
E.g. aircraft design, economics, structural loads.

• Linear Optimisation (Linear Programming) 
When objective + constraints are linear. 
Extremely fast and widely used.

• Nonlinear Optimisation 
Much harder — real-world engineering is almost always nonlinear.

• Discrete / Combinatorial Optimisation 
When choices are limited or integer-based. 
E.g. scheduling, routing, resource allocation, cryptography.

• Global vs Local Optimisation 
Local = best nearby point. 
Global = absolute best point (very hard to find).



3. Core Optimisation Methods

• Gradient Descent 
The foundation of machine learning. 
Move in the direction of steepest descent until you reach a minimum.

Variants: 
• stochastic gradient descent (SGD) 
• momentum 
• Adam 
• RMSProp 

Used for training all modern neural networks.

• Newton’s Method 
Uses curvature (second derivative) information. 
Fast, but computationally expensive.

• Quasi-Newton Methods (BFGS, L-BFGS) 
Approximate Newton’s method without needing second derivatives. 
Used in physics simulations, finance, and large-scale optimisation.

• Linear Programming — Simplex Method 
A legendary algorithm. 
Optimises millions of variables efficiently.

Used in:

• supply chains 
• airline scheduling 
• logistics 
• resource optimisation

• Quadratic Programming (QP) 
When objective is quadratic — standard in control theory.

• Genetic Algorithms & Evolutionary Methods 
Inspired by natural selection. 
Useful when the search space is chaotic or discontinuous.

• Simulated Annealing 
Avoids local minima by adding controlled randomness.

• Particle Swarm Optimisation 
Mimics swarm behaviour (birds, fish). 
Great for global optimisation problems.



4. Optimisation in the Real World

Engineering: 
• aircraft wing shape 
• safer car frames 
• stronger buildings 
• reduced vibration systems 

Physics & Cosmology: 
• fitting cosmological parameters 
• simulating minimal-energy configurations 
• solving inverse problems 

Computer Graphics & Games: 
• animation 
• pathfinding 
• physics engines 
• inverse kinematics 

AI / Machine Learning: 
• training neural networks 
• hyperparameter tuning 
• reinforcement learning 

Economics & Finance: 
• optimal portfolio construction 
• risk minimisation 
• economic equilibria 

Medicine & Biology: 
• optimal drug dosage models 
• protein folding algorithms 
• imaging reconstruction 



5. The Big Idea

Optimisation is the science of improvement. 
It transforms vague goals (“make this better”) into mathematical problems we can solve.

Without it, modern science and technology simply wouldn’t work.

Every design, every simulation, every AI model, every engineering structure 
depends on powerful optimisation algorithms running behind the scenes.



Written by Leejohnston & Liora — The Lumin Archive Research Division
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)